Design, analysis and experimental validation of a robust nonlinear path following controller for marine surface vessels

نویسندگان

  • Zhen Li
  • Jing Sun
  • Soryeok Oh
چکیده

The problemof path following formarine surface vessels using the rudder angle is addressed in this paper. A four-degree-of-freedom nonlinear surface vessel model, together with the Serret–Frenet equations, is introduced to describe the ship dynamics and path following error dynamics. While similar models have been used and reported in the literature for path following control algorithm development, the novelty of the approach presented in this work lies in the following aspects. (a) The back-stepping nonlinear controller design is based on feedback dominance, instead of feedback linearization and nonlinearity cancelation; (b) additional design parameters are employed in the Lyapunov function that lead to simplification of the controller in the design procedure and normalization of different variables in the Lyapunov function to improve the controller performance; (c) relying on feedback dominance and the introduction of the additional parameters in the Lyapunov function, the resulting controller is almost linear, with very benign nonlinearities allowing for analysis and evaluation; and (d) the performance of the nonlinear controller, in terms of path following, is analyzed for robustness in the presence of model uncertainties. The simulation results are presented to verify and illustrate the analytic development and the effectiveness of the resulting control against rudder saturation and rate limits, and delays in the control execution, as well as measurement noises. Furthermore, the control design is validated by experimental results conducted in a tank using a model ship. © 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Path Following Problem for Car-Like Robot in the Presence of Sliding Effect via LMI Formulation

One of the main problems of car-like robot is robust path following in the presence of sliding effect. To tackle this problem, a robust mix H2/H∞ static state feedback control method is selected. This method is the well-known linear robust controller which is robust against external disturbance as well as model uncertainty. In this paper, the path following problem is formulated as linear matri...

متن کامل

Experimental Validation Of A Robust Surge Speed Controller For Marine Surface Vessels

EXPERIMENTAL VALIDATION OF A ROBUST SURGE SPEEDCONTROLLER FOR MARINE SURFACE VESSELSbyJOHN V. FOEHRDecember 2014Advisor: Prof. Nabil ChalhoubMajor: Mechanical EngineeringDegree: Master of ScienceThe focus of the current work is on providing experimental validation forthe robust performance and good tracking characteristic of a surge speedcontroller fo...

متن کامل

طراحی کنترلگر تعقیب مسیر هماهنگ برای گروه شناور زیرسطحی با در نظر گرفتن مسئله اجتناب از برخورد

In this paper the problem of coordinated path following for a group of Autonomous Underwater Vehicle (AUV) subjected to obstacle and collision avoidance is considered. At first a back stepping controller is used for an AUV to design a path following controller and its stability is examined via Lyapunov criteria. Then using of graph theory, modeling of interconnection between AUV systems is addr...

متن کامل

H∞ Robust Controller Design and Experimental Analysis of Active Magnetic Bearings with Flexible Rotor System

H∞ controller for active magnetic bearings (AMBs) with flexible rotor system was designed in this paper. The motion equations of AMBs and flexible rotor system are built based on finite element methods (FEM). Weighting function matrices of H∞ controller for AMBs are studied for both the sensitivity and the complementary sensitivity of H∞ control theory. The simulation shows that the H∞ control ...

متن کامل

Design of Nonlinear Robust Controller and Observer for Control of a Flexible Spacecraft

Two robust nonlinear controllers along with a nonlinear observer have been developed in this study to control a 1D nonlinear flexible spacecraft. The first controller is based on dynamic inversion, while the second one is composed of dynamic inversion and µ-synthesis controllers. The extension of dynamic inversion approach to flexible spacecraft is impeded by the non-minimum phase characteristi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2009